"

開戸|礼唫【135e.cn】bo123彩票网官网✅顶级正规遊戏平台✅业内最顶尖原生APP,一站体验所有遊戏,bo123彩票网官网✅7*24H在线服务✅值得您信赖|期待您加入我们!

<acronym id="iaukw"></acronym>
<rt id="iaukw"><small id="iaukw"></small></rt>
<acronym id="iaukw"></acronym>
<acronym id="iaukw"></acronym>
<rt id="iaukw"></rt>
<acronym id="iaukw"><optgroup id="iaukw"></optgroup></acronym><rt id="iaukw"><center id="iaukw"></center></rt>
"
亞洲大學副教授龔自良學術報告 11月23日下午
發布時間: 2019-11-21 訪問次數: 180

學術講座【ancyclic two-disjoint-cycle covers of graphs】

時間:2019年11月23日 (星期六) 14:00 ~ 16:00

地點:旗山校區理工北樓601報告廳

主講:Asia University associate professor,Tzu-Liang Kung

主辦:福建省分析數學及應用重點實驗室, 數學研究中心

參加對象:數信學院相關教師與研究生


報告人簡介:Tzu-Liang Kung received the BS degree in industrial administration from Taiwan University in 1997, the MS degree in statistics from Taiwan Chiao Tung University, Taiwan, in 2001, and the PhD degree in computer science from Taiwan Chiao Tung University in 2009. From 2001 to 2004, he served as a Senior Engineer at the Behavior Design Corporation, Taiwan. He is currently an associate professor in the Department of Computer Science and Information Engineering, Asia University, Taiwan. His research interests include multivariate data analysis, machine translation, natural language processing, interconnected systems, fault-tolerant computing, and algorithm design.


報告摘要:A graph G = (V, E) is two-disjoint-cycle-cover [r1, r2]-pancyclic if for any integer l satisfying r1 ≤ l ≤ r2, there exist two vertex-disjoint cycles C1 and C2 in G such that the lengths of C1 and C2 are l and |V (G)|?l, respectively, where |V (G)| denotes the total number of vertices in G. On the basis of this definition, we established both Dirac-type and Ore-type conditions for graphs to be two-disjoint-cycle-cover vertex/edge [r1, r2]-pancyclic. In addition, we also study the cycle embedding in crossed cubes and locally twisted cubes under the consideration of two-disjoint-cycle-cover vertex/edge pancyclicity.


bo123彩票网官网 <acronym id="iaukw"></acronym>
<rt id="iaukw"><small id="iaukw"></small></rt>
<acronym id="iaukw"></acronym>
<acronym id="iaukw"></acronym>
<rt id="iaukw"></rt>
<acronym id="iaukw"><optgroup id="iaukw"></optgroup></acronym><rt id="iaukw"><center id="iaukw"></center></rt>